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Background

We consider the composite optimization problem involving a data
fitting function F(x) = 1

n

∑n
i=1 fi(a

⊤
i x) plus a block-separable

sparsity-inducing regularizer Ω(x) =
∑q

j=1Ωj(xGj ) as:

min
x∈ℜp

P(x) := F(x) + λΩ(x). (1)

where A = [a1, · · · , an]⊤ ∈ ℜn×p is the design matrix, G is the
partition, λ is the regularization parameter and x ∈ ℜp is the
model coefficients.
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Definitions and Assumptions

Equicorrelation Set(see [4]): Suppose θ∗ is the dual optimal, the
equicorrelation set is defined as

S∗ := {j ∈ {1, 2, . . . , q} :
1

n
ΩD
j (A

⊤
j θ

∗) = λ}. (2)

Assumption 1: Given the partition {G1, . . . ,Gq}, all
∇Gjfi(x) = [∇fi(x)]Gj are block-wise Lipschitz continuous with
constant Li, which means that for any x and x′, there exists a
constant L = maxi Li, we have

∥∇Gjfi(x)−∇Gjfi(x
′)∥ ≤ L∥xGj − x′Gj

∥. (3)

Assumption 2: F(x) and Ω(x) are proper, convex and
lower-semicontinuous.
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Motivation and Challenges

Motivation:

▶ Doubly stochastic gradient Method [7, 5] suffers huge
computational costs in the practical high-dimensional setting,

▶ Proximal gradient method with screening can simultaneously
achieve enjoys the implicit identification and explicit
identification.

Challenges:

▶ Existing safe screening algorithms are limited to the
deterministic setting.

▶ Existing works [1, 2, 3] fail to show how fast we can achieve
explicit model identification.
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Proposed Method

Algorithm 1 The ADSGD method

Input: x̂0.
1: for k = 1, 2, . . . do
2: x̃k−1 = x̂k−1, µ̃k−1 = ∇F(x̃k−1), x

0
k−1 = x̃k−1.

3: Compute θk−1 by (4).
4: rk−1 =

√
2T Gap(x̃k−1, θk−1).

5: Update Sk ⊂ Sk−1 by (5).
6: Update ASk

, x0k, x̃k, µ̃k with Sk.
7: for t = 1, 2, . . . ,mqk/q do
8: Randomly pick I ⊂ {1, 2, . . . , n} and j from Sk.
9: µk = ∇GjFI(x

t−1
k )−∇GjFI(x̃k) + µ̃Gj ,k.

10: xtk,Gj
= proxjη,λ(x

t−1
Gj

− ηµk).
11: end for
12: x̂k = 1

mk

∑mk
t=1 x

t
k

13: end for
Output: Coefficient x̂k.
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Proposed Method

Eliminating Step: We compute θk−1 with the active set Sk−1

from the previous iteration as

θk−1 =
−∇F(x̃k−1)

max(1,ΩD(A⊤
Sk−1

∇F(x̃k−1))/λ)
. (4)

We obtain new active set Sk from Sk−1 by the screening
conducted on all j ∈ Sk−1 as

1

n
ΩD
j (A

⊤
j θk−1) +

1

n
ΩD
j (Aj)r

k−1 < λ ⇒ x̃∗Gj
= 0. (5)
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Proposed Method

Doubly Stochastic Gradient Update: ADSGD only computes
the partial derivative ∇GjFI(x

t−1
k ) on one coordinate block with

respect to a sample each time. The proximal step is computed as:

proxjη,λ(x
′
Gj
) = argmin

xGj

1

2η
∥x′Gj

− xGj∥2 + λΩj(xGj ). (6)

Variance Reduction on the Selected Blocks: We adjust the
partial gradient estimation over the selected block Gj to reduce the
gradient variance as:

µk = ∇GjFI(x
t−1
k )−∇GjFI(x̃k) + µ̃Gj ,k. (7)
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Theoretical Analysis

Linear Convergence: Suppose x̂k be generated from the k-th
iteration of the main loop in Algorithm 1 and let |I| ≥ T/L and
η < 1

4L , we have

EPk(x̂k)− P(x∗) ≤ ρk[P(x̂)− P(x∗)]. (8)

We can choose |I| = T/L, η = 1
16L , and m = 65qL/µ to make

ρ < 2/3.

Explicit Model Identification: Define ∆j ≜
nλ−ΩD

j (A⊤
j θ∗)

2ΩD
j (Aj)

, denote

σ2
A as the spectral norm of A, suppose Ω has a bounded support

within a ball of radius M , given any γ ∈ (0, 1), any block that
j /∈ S∗ are correctly identified by ADSGD at iteration log 1

ρ
(1/ϵj)

with at least probability 1− γ where ϵj =
1
32

∆4
jγ

T 3σ2
AM2(P(x̂)−P(x∗))

.
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Theoretical Analysis

Overall Complexity: Suppose the size of the active features in set
Sk is dk and d∗ is the size of the active features in S∗, given any
γ ∈ (0, 1), let Km = O(log 1

ρ
(1/ϵj)), we have dk is decreasing and

dKm equals to d∗ with at least probability 1− γ. Define
s = 1

Kc

∑Kc
k=1 dk where Kc = O(log 1

ρ
(1/ϵ)), the overall complexity

of ADSGD is O((n+ T/µ)s log(1/ϵ)).
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Convergence Results

0 100 200 300 400 500 600 700 800 900

Training Time (s)

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

T
ra

in
in

g
 E

rr
o
r

ProxSVRG

MRBCD

SSBCD, batch=10

SSBCD, batch=20

(a) PlantGo

0 200 400 600 800 1000 1200 1400 1600 1800

Training Time (s)

10-8

10
-6

10
-4

10-2

10
0

102

T
ra

in
in

g
 E

rr
o
r

ProxSVRG

MRBCD

SSBCD, batch=10

SSBCD, batch=20

(b) Protein

0 200 400 600 800 1000 1200 1400

Training Time (s)

10-8

10
-6

10
-4

10
-2

10
0

10
2

104

T
ra

in
in

g
 E

rr
o
r

ProxSVRG

MRBCD

SSBCD, batch=10

SSBCD, batch=20

(c) Real-sim

Figure: Convergence results of different algorithms for Lasso on different
datasets.

We compare the convergence results of ADSGD w.r.t the running
time with competitive algorithms ProxSVRG [6] and MRBCD
[7, 5].
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Conclusion

▶ We propose a novel accelerated doubly stochastic gradient
descent method for generalized sparsity regularized problems
with lower overall complexity and faster explicit model
identification rate.

▶ We derive rigorous theoretical analysis for both strongly and
nonstrongly convex functions. For strongly convex function,
ADSGD can achieve a linear convergence rate and reduce the
per-iteration cost with a lower overall complexity
O(s(n+ T/µ) log(1/ϵ)).

▶ We rigorously prove our ADSGD algorithm can achieve the
explicit model identification at a linear rate O(log(1/ϵj)).

▶ We empirically show that ADSGD can achieve a significant
computational gain than existing methods.
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Thank You!
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