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Background

▶ We consider the composite optimization problem involving a
data fitting function F(x) = 1

n

∑n
i=1 fi(a

⊤
i x) plus a

block-separable regularizer Ω(x) =
∑q

j=1Ωj(xGj ) as:

min
x∈ℜp

P(x) := F(x) + λΩ(x). (1)

where A = [a1, · · · , an]⊤ ∈ ℜn×p is the design matrix, G is
the partition, λ is the regularization parameter and x ∈ ℜp is
the model coefficients.

▶ Most existing parallel learning methods focus on improving
the algorithm efficiency in terms of sample complexity and
thus suffer from high computation costs and memory burden
in the high-dimensional setting.

Objective: To accelerate high-dimensional models by
simultaneously enjoying the model sparsity and data sparsity.
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Proposed Method

Algorithm 1 Sha-DSAL

1: Input: x0B0
∈ ℜp, step size η, inner loops K.

2: for s = 0 to S − 1 do
3: All threads parallelly compute ∇F(x0Bs

).
4: Compute dual variable ys and update Bs+1 from Bs by (2).
5: Update ABs+1 , x

0
Bs+1

,∇F(x0Bs+1
)

6: For each thread, do:
7: for t = 0 to K − 1 do
8: Read x̂tBs+1

from the shared memory.
9: Randomly sample i from {1, 2, . . . , n}.

10: Compute vst by (3).
11: δst = proxηλϕi

(x̂tBs+1
− ηvst )− x̂tBs+1

.

12: xt+1
Bs+1

= xtBs+1
+ δst .

13: end for
14: xBs+1 = xKBs+1

, x0Bs+1
= xBs+1 .

15: end for
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Proposed Method

Eliminating Step: We update Bs+1 for ∀j ∈ Bs as:

ΩD
j (A

⊤
j y

s) + ΩD
j (Aj)

√
2L(P(x0Bs

)−D(ys)) ≥ nλ. (2)

Variance-Reduced Sparse Gradient: Define Ψi as the set of
blocks that intersect the nonzero coefficients of ∇fi, let nG be the
number of occurrences that G ∈ Ψi, if nG > 0, we define
dG = n/nG . Thus, define diagonal matrix for block i as
[Di]G,G = dGI|G|, the gradient over Bs+1 can be computed as

vst = ∇fi(a
⊤
i,Bs+1

x̂tBs+1
)−∇fi(a

⊤
i,Bs+1

x0Bs+1
) +Di,Bs+1∇F(x0Bs+1

). (3)

Sparse Proximal Gradient Update: Define
ϕi(x) =

∑
G∈Ψi

dGΩG(x), the new proximal operator can be
computed as

proxηλϕi
(x′) = argmin

x

1

2η
∥x− x′∥2 + λϕi(x). (4)
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Theoretical Analysis

Linear Convergence: Suppose τ ≤ 1
10

√
∆
, let step size

η = min{ 1
24κL ,

κ
2L ,

κ
10τL}, inner loop size K = 4 log 3

ηµ , we have

E
∥∥xBS

− x∗BS

∥∥2 ≤ (2/3)S ∥x0 − x∗∥2 . (5)

Elimination Ability: Equicorrelation set [4] is defined as
B∗ := {j ∈ {1, 2, . . . , q} : ΩD

j (A
⊤
j y

∗) = nλ}. As DSAL converges,
there exists an iteration number S0 ∈ N, s.t. ∀s ≥ S0, any variable
block j /∈ B∗ is eliminated by DSAL almost surely.
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Convergence Results

(a) KDD2010 (b) Avazu-app (c) Avazu-site

Figure: Convergence results on shared-memory architecture with 8
threads.

We compare six asynchronous methods: 1) PE-Strong-AGCD:
parallel strong elimination in [1]; 2) PE-Safe-AGCD: parallel static
safe elimination in [1]; 3) ProxASAGA [3]; 4) ProxASVRG [2]; 5)
Sha-DSAL-Naive; 6) Our Sha-DSAL.
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Linear Speedup Property

(a) KDD2010 (b) Avazu-app (c) Avazu-site

Figure: Convergence results with different number of threads/workers.
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Conclusion

▶ We propose a novel accelerated doubly sparse asynchronous
learning method for stochastic composite optimization and
apply it on shared-memory and distributed-memory
architecture respectively.

▶ DSAL can simultaneously enjoy the model sparsity and data
sparsity.

▶ We rigorously prove DSAL can achieve a linear convergence
rate, reduce the per-iteration cost, and achieve a lower overall
computational complexity under the strongly convex condition.

▶ We empirically show that DSAL can simultaneously achieve
significant acceleration and linear speedup property.
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Thank You!
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