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Background

» We consider the composite optimization problem involving a
data fitting function F(z) = 1 3% | f;(a/ z) plus a

block-separable regularizer Q(z) = Z?:l Qj(zg,) as:

i = AQ(x). 1
min P(z) = F() + AQ(e) e
where A = [a1, -+ ,a,]" € R™*P is the design matrix, G is
the partition, A is the regularization parameter and x € R? is
the model coefficients.

> Most existing parallel learning methods focus on improving
the algorithm efficiency in terms of sample complexity and
thus suffer from high computation costs and memory burden
in the high-dimensional setting.

Objective: To accelerate high-dimensional models by
simultaneously enjoying the model sparsity and data sparsity.



Proposed Method

Algorithm 1 Sha-DSAL

1: Input: m%o € RP, step size 1, inner loops K.
2. fors=0to S—1do
3: All threads parallelly compute V.F(z% ).

4:  Compute dual variable y* and update B, from B; by (2).
0 0

5. Update Ap,, |, TR, . V}'(xBS+1)

6:  For each thread, do:

7. fort=0to K —1do

8: Read i, from the shared memory.

9: Randomly sample i from {1,2,...,n}.

10: Compute v} by (3).

11: o7 :1 ProX, g, (:f:tlgs+1 —nuy) — j:%s+1'
t+1 _

12: T, = x%sﬂ +65.

13:  end for
0

. _ K _
14: TBeyr = TR, 11 TR, = TBayr-
15: end for




Proposed Method

Eliminating Step: We update Bs; for Vj € B; as:

QP(ATy*) + 0P (4))\/2L(P(s3,) — D(y)) > nA. (2)

Variance-Reduced Sparse Gradient: Define V; as the set of
blocks that intersect the nonzero coefficients of V f;, let ng be the
number of occurrences that G € V;, if ng > 0, we define

dg = n/ng. Thus, define diagonal matrix for block i as

[Di]g.g = dgl|g|, the gradient over By, can be computed as

,Ulf = Vfi(a;,rBS+1i'tBs+1) - vfi(a;|:85+1$%5+1) + Di,85+1v‘7:(x%5+1)‘ (3)

Sparse Proximal Gradient Update: Define

¢i(r) = > gey, dgfg(z), the new proximal operator can be
computed as

o1
prox,s, (#') = arg min %Hx —'||? + i (). (4)
x



Theoretical Analysis

Linear Convergence: Suppose 7 < 10f let step size
4log 3

n= mln{m, 37> Toer )+ inner loop size K = T e have
S 2
Ellas, — ]| < (2/3)% 1o - 27| (5)

Elimination Ability: Equicorrelation set [4] is defined as
B*:={je{l,2,...,q}: Qf(AjTy*) =nA}. As DSAL converges,
there exists an iteration number Sy € N, s.t. Vs > Sy, any variable
block j ¢ B* is eliminated by DSAL almost surely.



Convergence Results
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Figure: Convergence results on shared-memory architecture with 8
threads.

We compare six asynchronous methods: 1) PE-Strong-AGCD:
parallel strong elimination in [1]; 2) PE-Safe-AGCD: parallel static
safe elimination in [1]; 3) ProxASAGA [3]; 4) ProxASVRG [2]; 5)
Sha-DSAL-Naive; 6) Our Sha-DSAL.



Linear Speedup Property
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Figure: Convergence results with different number of threads/workers.



Conclusion

> We propose a novel accelerated doubly sparse asynchronous
learning method for stochastic composite optimization and
apply it on shared-memory and distributed-memory
architecture respectively.

» DSAL can simultaneously enjoy the model sparsity and data
sparsity.

» We rigorously prove DSAL can achieve a linear convergence
rate, reduce the per-iteration cost, and achieve a lower overall
computational complexity under the strongly convex condition.

» We empirically show that DSAL can simultaneously achieve
significant acceleration and linear speedup property.
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